This documentation is for Machine Learner 1.0.0. View documentation for the latest release.
Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 32 Next »

The following are the REST APIs that are implemented in WSO2 Machine Learner.

EntityOperationREST API
DatasetUpload a datasetPOST /api/datasets
Retrieve all datasetsGET /api/datasets
Retrieve all datasets and their versions for a given userGET /api/datasets/versions
Retrieve the dataset of a given dataset IDGET /api/datasets/{datasetId}
Retrieve all version sets of a datasetGET /api/datasets/{dataset_id}/versions
Retrieve a version setGET /api/datasets/versions/{versionset_id}
Delete a dataset

DELETE /api/datasets/{dataset_id}

Retrieve scatter plot points of a dataset versionPOST /api/datasets/{versionset_id}/scatter
Retrieve Cluster points of a dataset for a feature listGET /api/datasets/{dataset_id}/cluster/?features={feature_list}&noOfClusters={number_of_clusters}
Retrieve summarized statistics of a feature in a datasetGET  /api/datasets/{dataset_id}/stats/?feature={feature_name}
ProjectCreate a project (with a dataset name)POST /api/projects
Retrieve a projectGET /api/projects/{name}
Delete a projectDELETE /api/projects/{name}
Retrieve all projectsGET /api/projects
Retrieve all models in a projectGET /api/projects/{project_id}/models
Retrieve all analyses in a projectGET /api/projects/{project_id}/analyses
Analysis (Workflow)Create a new analysisPOST /api/analyses
GET /api/analyses/{name}
Delete an analysisDELETE /api/analyses/{id}
Retrieve all analysesGET /api/analyses
Set analysis configurations (e.g. algorithm type)POST /api/analyses/{id}/configurations
Set customized features for an analysisPOST /api/analyses/{id}/features
Load default features as customized featuresPOST /api/analyses/{id}/features/defaults
Set hyper parameters for the selected algorithm of an analysisPOST /api/analyses/{id}/hyperParams
Load default hyper parameters for the selected algorithm of an analysisPOST /api/analyses/{id}/hyperParams/defaults
ModelCreate a modelPOST /api/models
Retrieve a modelGET /api/models/{name}
Retrieve all modelsGET /api/models
Add model storage informationPOST /api/models/{id}/storages
Build a modelPOST /api/models/{id}
Predict with a model POST /api/models/{id}/predict
Publish a modelPOST /api/models/{id}/publish
Delete a modelDELETE /api/models/{id}
Export a modelGET /api/models/{name}/export

The REST APIs are secured with basic authentication. Therefore, follow the steps below to add a basic auth header when calling these methods.

  1. Build a string of the form username:password.
  2. Encode the sting you created above using Base64. For encoding the above string using Base64, see Encode to Base64 format.
  3. Define an authorization header with the term "Basic_", followed by the encoded string. For example, the basic auth authorization header using "admin" as both username and password is as follows: 
    Authorization: Basic YWRtaW46YWRtaW4=
  • No labels